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Abstract

Purpose – This paper aims to examine the unsteady flow of an incompressible, viscous, conducting
couple stress fluid flow through a porous medium over an infinite plate that is started into motion in
its own plane by an impulse. The presence of a uniform magnetic field in a direction perpendicular to
the plate is assumed.
Design/methodology/approach – Casting the governing equations into matrix form, the authors
use state space approach and Laplace transform technique to obtain the field variables. The inversion
of Laplace transform is carried through the adoption of a numerical technique.
Findings – Two specific problems related to a heated plate and a plate under uniform heating are
examined and the variation of temperature and velocity with respect to the couple stress parameter
numerically is studied. Numerical results concerning velocity and temperature distribution are
presented graphically.
Originality/value – The authors have attempted the problem in fluid dynamics through state space
approach which is exploited with tremendous success in modern control theory but not enough in
fluid dynamics.

Keywords Fluid dynamics, Flow, Laplace transforms, Numerical analysis

Paper type Research paper

1. Introduction
It is well known that in many of the real fluid flows the shear behavior cannot be
characterized by Newtonian theory. Hence during the last century several attempts
were made to propose new constitutive equations for diverse fluids taking into account
some aspects of certain real fluids. The stress-strain relationships in the newly stated
theories given by the constitutive equations are no longer linear/Newtonian and hence
these new ones are referred to as non-Newtonian fluid theories. One such theory is that
of the couple stress fluids which was initiated by V.K. Stokes (1966) in 1966. Consider
a body B enclosing a volume V without considering the microstructures of the
infinitesimal fluid volume element. The set of all forces acting on an infinitesimal
volume element �v are, in general, equivalent to a single resultant force together with a
resultant couple. Let us assume that the moment of the couple is not zero. With this
assumption V.K. Stokes has proposed the theory of couple stress fluids allowing for
the sustenance of couple stresses in addition to the usual stresses. The fluids can
also sustain the existence of body forces as usual and in addition body couples as well.
The stress tensor is no longer symmetric in this theory. This is one among the
several non-Newtonian fluid theories developed in the 20th century. This fluid theory
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is supposed to be a model for describing the behavior of lubricants in industrial
problems or in physiology. Several boundary and initial value problems have been
solved with reference to this fluid theory earlier and also in recent years (Stokes, 1984;
Lakshman Rao and Iyengar, 1985; EL-Dabe and EL-Mohhsndis, 1995; Naduvinamanin
et al., 2003; Lin and Hung, 2005, 2007).

The flow of an electrically conducting couple stress fluid heated from below in the
presence of a magnetic field was considered by Sharma and Thakur (2000). These
authors made some interesting observations regarding the effect of couple stress field
and magnetic field in the case of stationary convection. In this paper, we consider the
magneto hydro dynamic free convection flow of a couple stress fluid in a porous
medium past an infinite plate that is started into motion in its own plane by an impulse.
We study this problem by adopting the method of state space formulation. The state
space approach which has been hitherto applied to problems in modern control
systems and allied fields has its basis in the matrix exponential method and is applied
to any physical process where the behavior with respect to time is of interest. This
approach is more general than the classical Laplace and Fourier Transform
Techniques. In view of this, it is applicable to all systems that can be analyzed by
integral transforms in time. An excellent exposition of the state space analysis of
control systems is available in the classic book (Ogata, 1967) due to Ogata. The success
of state space approach is due to the fact that linear systems with time variant
parameters can be analyzed essentially in the same manner as in time invariant linear
systems. The present study is motivated by the study of a similar problem attempted
by Helmy et al. for the case of micropolar fluid (Helmy et al., 2002). Very recently
Devakar and Iyengar solved the Stokes’ first problem for a micropolar fluid through
state space approach (Devakar and Iyengar, 2009).

2. Statement of the problem and mathematical formulation
Consider the unsteady flow of an incompressible viscous conducting couple stress
fluid through a porous medium of permeability K past an infinite plate that is
started into motion in its own plane by an impulse. We consider the influence of a
transversely applied magnetic field on the flow generated. Take a point O in space,
through which the infinite plate is drawn in the fluid medium, as the origin. Let the
normal to the plate through O be taken as y-axis and the direction of motion of the plate
through O be taken as x-axis. It is possible that the motion of the conducting fluid may
induce an electric current and this may distort the applied magnetic field. We assume
that there arises no distortion. In many of the aerodynamic applications and
for electrically conducting liquid metals this is true (Helmy et al., 2002). We further
assume that:

. The fluid viscosity �, couple stress viscosity coefficient � and density � are all
constants.

. The effects of dissipated energy are neglected.

. As a result of the application of generalized Fourier Law the effect of relaxation
time �0 is considered.

. B0 ¼ �eH0 is the nonvanishing component of the magnetic induction and
the Pondermotive force has one nonvanishing component which is along the
x-direction given by
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Fx ¼ �
�B2

0u

�

In view of the nature of the problem, we have the velocity vector �qq and temperature T
in the form:

�qq ¼ ðuðy; tÞ; vðy; tÞ; 0Þ; T ¼ Tðy; tÞ ð2:1Þ

with the above assumptions, the unsteady magneto hydro dynamic free convection
flow equations of a couple stress fluid are given by (see chapter 3 in Stokes, 1984):

@v

@y
¼ 0 ðContinuity equationÞ ð2:2Þ
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ðEnergy equationÞ

ð2:4Þ
where

	 ¼ �
�

; e ¼ �1

�

�; �;B0; 
; and �0 are respectively porosity constant, electrical conductivity, magnetic
induction, the thermal conductivity, and the thermal relaxation time.

In the above equations, u and v are the velocity components in the x and y directions
respectively. T is the fluid temperature. � and � are the viscosity and couple stress
viscosity coefficients respectively as stated earlier. K as already mentioned earlier is
permeability constant and Q is intensity of heat source.

Stokes (1984) proposes mainly two types of boundary conditions:

(1) the vorticity of the fluid on the boundary is equal to the rotational velocity of
the boundary, and

(2) the couple stresses vanish on the boundary.

We propose to solve the present problem with the boundary condition (1). In view of
this, the relevant boundary conditions are:

uð0; tÞ ¼ 0 t � 0

¼ U0ðtÞ t > 0
ð2:5Þ

and,
@uð0; tÞ
@y

¼ 0 for t > 0 ð2:6Þ

Initially, we presume that:
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uðy; 0Þ ¼ 0 ð2:7Þ

Integrating the continuity Equation (2.2), we get v as a constant or function of time. In
the present investigation, we take v ¼ 0.

Nondimensional formulation
Let us introduce the nondimensionalization scheme through:

u ¼ Uu0 y ¼ 	

U
y0 T � T1 ¼ ðTw � T1Þ�

t ¼ 	

�U 2
t0 �0 ¼

	

�U 2
� 00 K ¼ 	2

U 2
K 0

Q ¼ Q0U 2ðTw � T1Þ

	2

P ¼ 	cp�




ð2:8Þ

In view of v ¼ 0, with the help of the above nondimensionalization, dropping the
primes we get:

@u

@t
¼ @

2u

@y2
� eU 2

	3

� �
@4u

@y4
� M1 þ

1

K

� �
u ð2:9Þ

@�

@t
þ �0

@2�

@t2
¼ 1

P

@2�

@y2
þ Qþ �0

@Q

@t

� �
ð2:10Þ

where:

M1 ¼
�B2	

�U 2
; M ¼ M1 þ

1

K
ð2:11Þ

The boundary conditions to be satisfied by u are:

uð0; tÞ ¼ 0 t � 0

¼ U0ðtÞ t > 0
ð2:12Þ

@uð0; tÞ
@y

¼ 0 for t > 0 ð2:13Þ

where U0 (t) is a prescribed nondimensional velocity.
Taking the Laplace transform of the equations and the boundary conditions we get:

d4�uu

dy4
¼ 	3

eU 2

d2�uu

dy2
� ðsþMÞ	3

eU 2
�uu ð2:14Þ

d2 ���

dy2
¼ ns���� ð1þ �0sÞ�QQ ð2:15Þ
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where

nðsÞ ¼ Pð1þ �0sÞ ð2:16Þ

The boundary conditions in the transformed domain are

�uuð0; sÞ ¼ �UU0ðsÞ

and
@�uuð0; sÞ
@y

¼ 0
ð2:17Þ

and the regularity condition requires that the velocity has to be finite as y!1 which
implies that �uuðy; sÞ is finite as y!1.

3. State space formulation
We choose u; ð@u=@yÞ; ð@2u=@y2Þ; ð@3u=@y3Þ as the state variables in the physical
domain and �uuð y; sÞ; ðd�uu=dyÞ; ðd2�uu=dy2Þ; ðd3�uu=dy3Þ as the state variables in the
Laplace transform domain.

Let us introduce:

u1ð y; tÞ ¼
@u

@y

u2ð y; tÞ ¼
@u1

@y

u3ð y; tÞ ¼
@u2

@y

ð3:1Þ

Let �uu; �uu1; �uu2; �uu3 denote the Laplace Transforms of u; u1; u2; u3 respectively with
respect to t. With this, Equation (2.14) can be rewritten in the form of the following
system of first order differential equations:

@�uu

@y
¼ �uu1ð y; sÞ

@�uu1

@y
¼ �uu2ð y; sÞ

@�uu2

@y
¼ �uu3ð y; sÞ

@�uu3

@y
¼ 	3

eU 2
�uu2ð y; sÞ �

ðsþMÞ	3

eU 2
�uuð y; sÞ

ð3:2Þ

This set of equations can be recast in the matrix form as:

d

dy
¼

�uu
�uu1

�uu2

�uu3

2
664

3
775

0 1 0 0
0 0 1 0
0 0 0 1

�ðsþMÞ	3

eU 2
0

	3

eU 2
0

2
6664

3
7775

�uu
�uu1

�uu2

�uu3

2
664

3
775 ð3:3Þ
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This is of the form:

d �VV

dy
¼ AðsÞ�VV ð3:4Þ

with,
�VVð y; sÞ ¼ �VVð0; sÞ for y ¼ 0 ð3:5Þ

where,

�VVðy; sÞ ¼ ð�uuð y; sÞ; �uu1ð y; sÞ; �uu2ð y; sÞ; �uu3ð y; sÞÞT ð3:6Þ

Formal solution of (3.4) and (3.5) is seen to be:
�VVðy; sÞ ¼ exp½AðsÞy� �VVð0; sÞ ð3:8Þ

We obtain the solution �VVð y; sÞ using the technique of state space analysis.
The characteristic equation of the matrix A(s) is given by:

x4 ¼ 	3

eU 2
x2 þ ðsþMÞ 	

3

eU 2
¼ 0 ð3:9Þ

and this can be put in the form where,

ðx2 � k2
1Þðx2 � k2

2Þ ¼ 0 ð3:10Þ

with,

k2
1 þ k2

2 ¼
	3

eU 2
; k2

1k2
2 ¼
ðsþMÞ	3

eU 2
ð3:11Þ

�k1, �k2 are the characteristic roots of A(s) and without loss of generality, we can take
k1, k2 to be having positive real parts. We note that the matrix exp(A(s)y) can be put in
the Maclaurin’s series expansion consisting of I and positive integral power of A (s).
The matrix A(s) is a square matrix of order four and it satisfies its characteristic
equation which is of fourth degree. Hence A4 and higher powers of A can be expressed
in the form of a matric polynomial of degree three and in view of this, the matrix
exp(A(s)y) takes the form:

expðAðsÞyÞ ¼ Lðy; sÞ ¼ a0I þ a1 Aþ a2 A2 þ a3 A3 ð3:12Þ

where a0; a1; a2; a3 are some functions of s and y which are to be determined. From
state space theory, we notice that the characteristic roots of A(s) satisfy the equations:

expðk1 yÞ ¼ a0 þ a1k1 þ a2k2
1 þ a3k3

1

expð�k1 yÞ ¼ a0 � a1k1 þ a2k2
1 � a3k3

1

expðk2 yÞ ¼ a0 þ a1k2 þ a2k2
2 þ a3k3

2

expð�k2 yÞ ¼ a0 � a1k2 þ a2k2
2 � a3k3

2

ð3:13Þ
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Solving the simultaneous system of Equations (3.13) for a0; a1; a2; a3, we get:

a0 ¼
1

F
½k2

1 coshðk2 yÞ � k2
2 coshðk1yÞ�

a1 ¼
1

F

k2
1

k2

� �
sinhðk2 yÞ � k2

2

k1

� �
sinhðk1 yÞ

� �

a2 ¼
1

F
½coshðk1 yÞ � coshðk2 yÞ�

a3 ¼
1

F

1

k1

� �
sinhðk1 yÞ � 1

k2

� �
sinhðk2 yÞ

� �
ð3:14Þ

Substituting these in (3.5) we can evaluate the elements Lij of the matrix:

Lð y; sÞ ¼ expðAðsÞyÞ

These are given by:

L11 ¼
1

F
½k2

1 coshðk2 yÞ � k2
2 coshðk1 yÞ�

L12 ¼
1

F

k2
1

k2
sinhðk2 yÞ � k2

2

k1
sinhðk1 yÞ

� �

L13 ¼
1

F
½coshðk1 yÞ � coshðk2yÞ�

L14 ¼
1

F

1

k1
sinhðk1 yÞ � 1

k2
sinhðk2 yÞ

� �

L21 ¼
�k2

1k2
2

F

1

k1
sinhðk1 yÞ � 1

k2
sinhðk2 yÞ

� �

L22 ¼
1

F
½k2

1 coshðk2 yÞ � k2
2 coshðk1 yÞ�

L23 ¼
1

F
½k2 sinhðk2 yÞ � k1 sinhðk1 yÞ�

L24 ¼
1

F
½coshðk1 yÞ � coshðk2 yÞ�

L31 ¼
�k2

1k2
2

F
½coshðk1 yÞ � coshðk2 yÞ�

L32 ¼
�k2

1k2
2

F

1

k1
sinhðk1 yÞ � 1

k2
sinhðk2 yÞ

� �

L33 ¼
1

F
½k2

1 coshðk1yÞ � k2
2 coshðk2 yÞ�

L41 ¼
k2

1k2
2

F
½k1 sinhðk1 yÞ þ k2 sinhðk2 yÞ�

L42 ¼
�k2

1k2
2

F
½coshðk1 yÞ � coshðk2 yÞ�
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L43 ¼
1

F
½k3

1 sinhðk1 yÞ � �k3
2 sinhðk2 yÞ�

L44 ¼
1

F
½k2

1 coshðk1 yÞ � k2
2 coshðk2 yÞ�

ð3:15Þ

where,

F ¼ k2
1 � k2

2

The physics of the problem indicates that far away from the plate (i.e.) as y!1, the
disturbance caused by the impulsive motion of the plate y ¼ 0 is not felt and due to
this, the solution has to be finite. Hence we must replace sinh (ky) and cosh (ky) terms
in Lij ’s by �e�ky=2 and e�ky=2, respectively. With this change, let the matrix L be
denoted by L�. Hence we can obtain the solution in the Laplace transform domain as:

�VVð y; sÞ ¼ L�ð y; sÞ�VVð0; sÞ ð3:16Þ

In the vector,

�VVð0; sÞ ¼ ð�uuð0; sÞ; �uu1ð0; sÞ; �uu2ð0; sÞ; �uu3ð0; sÞÞ

we know that,

�uuð0; sÞ ¼ �UU0ðsÞ
�uu1ð0; sÞ ¼ 0

and �uu2ð0; sÞ; �uu3ð0; sÞ are unknowns. We obtain these by substituting y ¼ 0 in (3.16) to
get a system of two equations in the unknowns �uu2ð0; sÞ; and �uu3ð0; sÞ. From this system,
we get:

�uu2ð0; sÞ ¼ �k1k2
�UU0

�uu3ð0; sÞ ¼ k1k2ðk1 þ k2Þ �UU0

ð3:17Þ

Thus we get the Laplace transform of the velocity component �uuð y; sÞ as:

�uuð y; sÞ ¼ k1e
�k2y � k2e

�k1y

ðk1 � k2Þ
�UU0ðsÞ ð3:18Þ

4. Solution of the energy equation
The equation of energy given in (2.10), after taking the Laplace transform, is
transformed to:

d2 ���

dy2
¼ ns���� ð1þ �0sÞ�QQ ð4:1Þ
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where,

nðsÞ ¼ Pð1þ �0sÞ ð4:2Þ

and ��� and �QQ are Laplace transforms of � and Q, respectively. We shall consider two
applications for illustration:

Case (i)
Let us consider the flow of an incompressible conducting couple stress fluid in a

porous medium occupying a semi infinite region y � 0 of space bounded by a moving
plate y ¼ 0. Let us assume that a thermal shock of the form:

�ð0; tÞ ¼ �0HðtÞ ð4:3Þ

is applied to the plane at time t ¼ 0 where �0 is a constant and HðtÞ is Heaviside unit
step function. Assuming all initial conditions to be 0 and taking Laplace transform of
(4.3), we see that ��� is given by:

d2 ���

dy2
¼ ns��� and ���ð0; sÞ ¼ �0

s
ð4:4Þ

Hence ���ð y; sÞ

���ð y; sÞ ¼ �0e�
ffiffiffiffi
ns
p

y

s
ð4:5Þ

where n ¼ nðsÞ ¼ Pð1þ �0sÞ and in view of this exact numerical inversion seems to be
difficult.

Case (ii)
Here, instead of the thermal shock taken in case (i), we assume that there is a plane

distribution of continuous heat sources located at the plate at y ¼ 0. We shall take the
intensity of the heat sources as:

Qð y; tÞ ¼ Q0HðtÞ�ð yÞ ð4:6Þ

where Q0 is a constant and � ( y) is Dirac delta function. Taking Laplace transform of
(4.6) we get:

�QQð y; sÞ ¼ Q0�ð yÞ
s

ð4:7Þ

Let us consider a right circular cylinder of unit base with its axis perpendicular to the
plane source of heat and whose bases lie on opposite sides of it. We use Gauss
divergence theorem to obtain the thermal condition at the plane source. Taking the
limit as the height of the cylinder tends to 0 and noting that there is no heat flux
through the lateral surface of the cylinder, we get:

qð0; tÞ ¼ Q0

2
HðtÞ ð4:8Þ

Using the generalized Fourier law of heat conduction in the nondimensional form, namely:
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qþ �0
@q

@t
¼ � @�

@y

� �
y¼0

ð4:9Þ

and taking the Laplace transform for this, after some algebra, we get:

���0ð0; sÞ ¼ � nQ0

2Ps
ð4:10Þ

In this case we finally get:

���ð y; sÞ ¼
ffiffiffi
n
p

Q0

2Ps

3

2

e�
ffiffiffiffi
ns
p

y þ Q0

Ps2
ð4:11Þ

Introducing ð�=Q0Þ as nondimensional temperature distribution, ��� in nondimensional
form is given by:

���ð y; sÞ ¼
ffiffiffi
n
p

2Ps

3

2

e�
ffiffiffiffi
ns
p

y þ 1

Ps2
ð4:12Þ

5. Inversion of �uuð y; sÞ and �uuð y; sÞ
In section 3 we have obtained the Laplace transform of u( y,t) through Equation (3.18)
and in section 4, we obtained the Laplace transform ���ð y; sÞ of the temperature
distribution in the case of thermal shock problem through (4.5) and in the case of plane
continuous distribution of heat sources located at y ¼ 0 through Equation (4.12). The
Laplace transforms involve s and the parameters k1; k2 and n which are functions of s.
Direct inversion of these Laplace transforms is difficult in view of the involved nature
of the functions �uuð y; sÞ and ���ð y; sÞ. Hence we propose to invert these functions by the
numerical inversion procedure introduced by Honig and Hirdes (1984).

To invert the Laplace transform in the above equations, a numerical technique
based on the Fourier expansion of a function is used.

Let �ff ðsÞ be the Laplace transform of a given function f(t). The inversion formula for
the Laplace transform states that:

f ðtÞ ¼ 1

2�i

ðcþi1

c�i1

eiyt�ff ðsÞds ð5:1Þ

where c is an arbitrary constant greater than all the real parts of the singularities of
�ff ðsÞ. Taking s ¼ c þ iy, we get:

f ðtÞ ¼ ect

2�

ðcþi1

c�i1

eiyt�ff ðcþ iyÞdy

This integral can be approximated by:
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f ðtÞ ¼ ect

2�

X1
k¼�1

eikt�y�ff ðcþ ik�yÞ �y

Taking �y ¼ �=t1, we get:

f ðtÞ ¼ ect

t1
Re

1

2
�ff ðcÞ þ

X1
k¼1

e
ik�t=t1�ff cþ ik�

t1

� �" #

For numerical purposes, this is approximated by the function:

fN ðtÞ ¼
ect

t1
Re

1

2
�ff ðcÞ þ

XN

k¼1

e
ik�t=t1 �ff cþ

ik�

t1

� �" #
ð5:2Þ

where N is a sufficiently large integer chosen such that:

f ðtÞ ¼ ectRe e
iN�t=t1�ff cþ

iN

t1

� �� �
< " ð5:3Þ

and " is a preselected small positive number that corresponds to the degree of accuracy
to be achieved. Formula (5.2) is the numerical inversion formula valid for 2t1 � t � 0.

In particular, we choose t ¼ t1, obtaining:

fN ðtÞ ¼
ect

t
Re

1

2
�ff ðcÞ þ

XN

k¼1

ð�1Þk �ff cþ
ik�

t1

� �" #
ð5:4Þ

6. Numerical discussion
u( y,t) and �ð y; tÞ denote the inverse Laplace Transforms of �uuð y; sÞ and ���ð y; sÞ,
respectively. To determine these we attempt the problem with U0ðtÞ ¼ 1 for all t > 0.
With this �UU0ðsÞ ¼ 1=s. u( y,t) and �ð y; tÞ are obtained for various values of y and t for
diverse values of c1, M, R and different values of y and t through the cited numerical
inversion procedure. In Figure 1 we plot the variation of velocity with respect to
distance y for different values of time for fixed values of the other parameters indicated
in the figure. As expected, as y increases, there is a decrease in u.

Figure 2 displays the variation of velocity with respect to y for different values of c1

for fixed time t ¼ 1, M ¼ 2 and R ¼ 0.5. As the couple stress parameter increases the
velocity shows a decreasing trend for any fixed y. Thus a decrease in couple stress
viscosity leads to an increase in the fluid velocity. For any fixed c1, as y!1, the
velocity tends to 0.

Figure 3 shows the variation of velocity with respect to the parameter M involving
the magnetic effect and thermal conductivity. As M increases the velocity decreases for
any fixed y. Further velocity tends to 0 as y!1.

Figure 4 describes the variation of velocity with respect to the Reynolds number R.
An increase in R indicates a decrease in �. As R increases, the velocity increases.
Further for a fixed R, velocity tends to 0 as y!1 as in the other cases.
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In Figure 5 we plot the temperature distribution �ð y; tÞ in the thermal shock
problem considered in case (i) of section 5. As the relaxation time �0 (written as t1 in
Figure 5) takes values 0.0, 0.1, 0.2 the temperature tends to 0 as y!1.

In Figure 6, in the case of plane continuous temperature distribution on the
plate y ¼ 0. (Case (ii) of section 5), the temperature is seen to increase initially for any

Figure 1.
Variation of velocity for

c1 ¼ 0.5, M ¼ 2, R ¼ 0.5
as the parameter t changes

Figure 2.
Variation of velocity for

t ¼ 1, M ¼ 2, R ¼ 0.5 as
the parameter c1 changes
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�0 ¼ t1 and then found to be tending to 0 as y!1. Further, nearer to the plate, as �0

increases, � increases as y increases from 0 to a critical value and then quickly tends to
0 as y!1.

7. Conclusion
The problems in couple stress fluid flows earlier have been solved by conventional
methods either analytically or numerically. In the present paper the couple stress fluid

Figure 3.
Variation of velocity for
t ¼ 1, c1 ¼ 0.5, R ¼ 0.5
as the parameter M
changes

Figure 4.
Variation of velocity for
t ¼ 1, c1 ¼ 0.5, M ¼ 2, as
the parameter R changes
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flow equations introducing magnetic effect pertaining to free convection flow of the
fluid through a porous medium over an infinite plate that is started into motion in its
own plane by an impulse is considered. Deviating from the classical approach we have
adopted a state space approach to solve the problem. This approach which is used
frequently in modern control theory is adopted here and this method gives exact

Figure 6.
Variation of temperature
for different values of t1
(continuous temperature

distribution)

Figure 5.
Variation of temperature
for different values of t1
(thermal shock problem)
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solutions for the velocity and temperature distributions in Laplace transform domain.
We notice that as the intensity� of the magnetic field increases, it results in the increase
of the parameter M. As M increases, the velocity decreases. In fact, an increase in �
leads to an increase in M, which results in an increase of the Lorentez force
�FF ¼ �ð�uu� �BBÞ � �BB. This force increases the retardation and opposes the flow and
hence the decrease in the velocity. This is in agreement with our expectation that an
imposition of magnetic field results in a decrease of velocity.
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